Wednesday, July 17, 2019

Factors Affecting Reaction Rate Essay

substructureIn diagnoseence to the impact theory, molecules act as pocket-size spheres that shake up and bounce off from each(prenominal) one(prenominal) other, transferring brawn among themselves when the collide. In order for a response to occur, on that point must be collisions surrounded by molecules. through experimentation, factors atomic twist 18 discovered that influence the reception rank of chemical responses include the concentration of reactants, temperature, out bea, the somatogenic state of reactants, and a particle accelerator. This experiment regarding the factors that affect reply say canvasss the effects of improverd concentration and temperature of the hydrochloric astringent final result (HCl) and overly the effect of ontogenesis advance scope of milligram come to the fore (Mg). When glow sticks are immersed in a hot weewee bath, it is turn up that they glow with greater intensity. This proves that an add-ond temperature has a n effect on the answer itself, allowing molecules that make up the liquid privileged the glow stick to move with greater speed, consequenceing in more collisions. The balanced equation for this answer would be Mg (s) + 2 HCl (aq) = MgCl2 (aq) + H2 (g) PurposeThe objective of this laboratory experiment is to observe and record the effect of reactant concentration, reactant come on sector and reactant temperature on the overall govern of reply. meditationDuring this experiment, venomouss of different concentration are utilized, and the different response rates metrical. When the reactants concentration increases, there are more atoms per billet for a collision to occur. A prediction for the effect of concentration on response rate would be that the higher the concentration of the answer, the fast the chemical response fourth dimension. As the temperature of the answer rate increases, the molecules forget move windy, excessively resulting in more collisions and peradventure a faster reaction rate. Lastly, in a reaction, increasing the surface area of the solid reactant increases the takings of collisions per second. The more collisions there are, the more energy is produced, and alike could contri savee to afaster rate of reaction. Procedure(s) revel refer to Heath Chemis subdue Laboratory try out 18 A pg. 192-196 In Part triadsome ready of Temperature on response assess, only three beakers were utilized in the experiment, Beaker A containing hot piss, Beaker B containing water at room temperature, and Beaker C containing iced water. The 4th beaker was non utilized due to the limited clock allotted for this experiment. In this experiment, a stopwatch was not employ to record quantify. Instead, an Apple iPh adept was employ to astute the time it took for the reactions to occur completely. The device was capable of cipher time to the hundredth decimal point and an unbelief of 0.01 was provided. Safety NotesHydrochloric aci d is highly corrosive to skin, eye and clothing. When handling it, make sure to wear prophylactic goggles, lab aprons, plastic gloves and use a forward shield. Wash and spills or splashes immediately with plenty of water and inform the supervising teacher. Reagent Disposal- Return any unwarranted atomic number 12 metal to the designated container. Any hydrochloric solutions left in the sort vacuum electron tubes should be returned to another designated container for neutralization originally being discarded down the sink. Data and Observations numeric Observations-Part I- Effect of slow-wittedness on reaction estimateMass of 11 cm unclothe of Mg 0.18 g 0.01Average mass of 1 cm striptease artist of Mg 0.18 g / 11 strips = 0.0163 0.0001 *two monumental figures (0.016) Concentration of Acid chemical reaction fourth dimension (in seconds) 0.01 reception Rate (g Mg/s) 0.50 M 650.66 0.0000251.0 M 128.50 0.000133.0 M 33.95 0.000486.0 M 13.26 0.0012Part II- Effect of Surfa ce Area on chemical reaction RateShape of Magnesium Strip Reaction Time (in seconds)0.01 Reaction Rate (g Mg/s)Test resistance A- slivers of Mg 110.40 0.00015Test Tube B- rolled up strip of Mg 134.55 0.00012Test Tube C- apartment piece of Mg 128.05 0.00013Part III- Effect of Temperature on Reaction RateTemperature in C 1Reaction Time (in seconds)0.01 Reaction Rate (g Mg/s)Beaker A- Heated wet Bath (57 C) 73.35 0.00022Beaker B- Room Temperature Water Bath (23 C) 128.05 0.00013 Beaker C- Chilled Ice Water Bath (5C) 392.50 0.000042qualitative Observations-Before immersion in hydrochloric acid, the atomic number 12 strips were a dull grey colour, coated in a sort of ovalbumin substance. Sandpaper was used to subscribe to impurities from the atomic number 12 strips, resulting in a grey strip, with a bit of metallic lustre. The strip of milligram reliable was extremely malleable and was easily cut into 1 cm strips and folded into a tiny ball. During the immersion of the magnesium m etal in the hydrochloric acid solution, white bubbles could be seen escaping the surface of the metal as gas was produced during the reaction. Depending on the temperature of the hydrochloric acid and the overall molar concentration, the rate of reaction differed yet the same signs were shown. During the reaction between the magnesium metal and higher concentrations of hydrochloric acid, it was observed that the test tube grew quite warm to the touch. As the immersed magnesium strip sank down, it appeared coated in a layer of white bubbles that fizzed like a carbonated drink.In the impose concentrations of hydrochloric acid, the strip spent some time blow at the surface of the solution in the test tube, later sinking down to the bottom as the bubbles died down. According to the balanced equation, the white bubbles that rose to the surface are hydrogen gas (H2 (g)) bubbles produced as one of the products in the reaction. During the reaction, as the magnesium reacted with the hydro chloric acid solution, there was a strong metallic scent that came from the absolved system, especially in when the magnesium strip was dissolve in the strongest concentration of hydrochloric acid. After the reaction, no get out of the magnesium metal remained in the test tube. The test tube was filled with a completely top off sedimentary solution. Questions and Calculations1.See attached graph 1 Reaction Rate vs. Concentration of HCl (aq) and graph 2 Reaction Rate vs. Temperature Data. 2. a) satisfy refer to Reaction Rate vs. Concentration of HCl (aq). As the concentration increases, the rate of reaction increases as well, due to the higher number of molecules colliding with each other. b) As the surface area of the surface area increases, the reaction rate excessively speeds up. This happens because there is a greater surface area available for reaction. c) disport refer to Reaction Rate vs. Temperature Data. As the temperature increases, the rate of reaction increases. Thi s is due to the increased energising energy, allowing the molecules to collide more often and with more energy. 3. Please refer to Reaction Rate vs. Concentration of HCl (aq). As shown on the graph, as the concentration doubles, the reaction rate also doubles approximately (due to sources of mis agreement). Although this seems to be the case in this experiment, it doesnt of necessity mean that this statement is true(p) for all reactions.The orders of reactions and equations that calculate the rate relieve oneself to also be taken into consideration. 4. In Part II, the small slivers of magnesium produced the fastest reaction. This is due to in increase in surface area, by cutting the one-centimeter strip into tiny slivers, allowed more surface area to be exposed to the hydrochloric acids, allowing for a quicker reaction rate. 5. Please refer to Reaction Rate vs. Temperature Data. When the test tube containing the hydrochloric acid solution was immersed in the ice water bath, it produced the slowest reaction rate and time. This is a result of the slowing of molecules due to decrease in temperature. As the kinetic energy and safari of the molecules decrease, the reaction rate also decreases due to the reduced number of collisions between molecules. 6. a) Please refer to Reaction Rate vs. Concentration of HCl (aq).For a 1 cm strip of magnesium metal to react with 4.0 M hydrochloric acid, the reaction time would be 21 seconds, calculated to two significant figures. b) Please refer to Reaction Rate vs. Temperature Data. For a 1 cm strip of magnesium metal to react with 1.0 M hydrochloric acid at 15 C, the reaction time would be 190 seconds, calculated to two significant figures. 7. Please refer to Reaction Rate vs. Temperature. Doubling the temperature does increase the reaction rate, due to faster moving particles, but it doesnt necessarily double the reaction rate. The increase in kinetic energyprovides some(prenominal) more collisions between molecules, b ut the energy coming from the molecular collisions does not only double. Follow-Up Questions1. It is possible to vary the factors of concentration, surface area and temperature in a way to prevent a reaction from happening. As the concentration of a solution decreases in molarity, there are fewer atoms per space for the collision to occur. By subverting the temperature drastically, it slows down the movement of particles so that the collisions are few in number and release less energy when molecules bump against each other. It is the same with surface area, as the engrossment becomes greater and the sides exposed to the chemical reaction decrease, it lowers to rate of reaction significantly. In order to prevent a reaction from happening at all, the temperature should be extremely cold, the concentration as low as possible and the density of the reactant (ex. magnesium metal) as dense as possible, mayhap a large brick. This is only a speculation though, and as studied in reaction kinetics, both reaction requires a minimum amount of energy in order to react. By not achieving that disinvest minimum of activation energy required, a reaction will not occur.2. The definition of a catalyst would be a substance that speeds up a reaction, but remains chemically unchanged at the end of the reaction. After adding a catalyst to the reaction between the solid magnesium metal and aqueous solution of hydrochloric acid, the reaction rate would increase, due to the grooming of an alternative route for the reaction with lower activation energy. This does not lower the overall activation energy, but simply provides a different route for the reaction to happen where the molecules collide more often.3. Kindling forest has more surface area and has a lower density, making it easier for the fire to burn due to the increased area of exposure to type O (O2). The mass of liberation is also lower than a log, allowing it to heat up quickly to the temperature needed for a combus tion reaction to occur. A log is very dense and has a larger mass, therefore taking a yearner time to heat it up to the point where a combustion reaction would occur.4. When a person blows on a smoldering fire, the level of oxygen is increased. type O is a key component in a combustion reaction, is it needed as a open fire in order for the reaction to occur. This will increase the temperature, which speeds up the kinetic energy of the molecules molecules, allowing for more collision energy and afaster rate of reaction. polish and Error AnalysisIn finishing, it was discovered that an increase in concentration, surface area and temperature all contributed to a faster rate of reaction, developing a conclusion that all of these are factors that affect the rate of reaction. As predicted in the hypothesis, the application of the collision theory was a key factor in the increasing the reaction rate as the concentration of HCl (0.50-6.0 M HCl), surface area of Mg (slivers, rolled, and fl at) and temperature of HCl (5 C- 57 C) was increased. The highest concentration of HCl (6.0 M) produced the faster reaction rate of 0.0012 g Mg/s. When the magnesium metal was cut into tiny slivers, this also produced a faster reaction rate of 0.0015 g Mg/s. As hydrochloric acid solution was warmed in a hot water bath to a temperature of 57 C, it produced a reaction rate of 0.00022 g Mg/s. This experiment was not perfect, and there were many sources of error during the process of completing this laboratory experiment.The magnesium metal utilized was coated in a dull, white coating, due to the exposure of magnesium to the oxygen in the environment, producing magnesium oxide (MgO). Sandpaper was utilized to try and remove most of the magnesium oxide coating, this also contributed to the sources of error because the sandpaper was not new and had contamination from the substances it had been used on before. Test tubes were used in the experiment, but through careful observation, some of the test tubes had not been properly cleaned, and contained minimal residue inside from antecedent experiments, perhaps contaminating the hydrochloric acid solution. As the magnesium metal was cut into slivers, particles of the magnesium might have been stuck to the blades of the scissors or the napkin the slivers were put on, labored the mass and creating another error for the experiment. There was sloppiness during the solution preparation stage about the labelling on the jars of hydrochloric acid solution, and a new solution had to be prepared by the supervising teacher. An Apple iPhone was used to collect the reaction time, and the measurement recording was qualified due to the number of decimal places the iPhone could time to, and uncertainties had to be provided alongside the measurement data collected. There was also a source of error for the time the magnesium metal was dropped into the acid solution, as starting the time as soon as the magnesium entered the acid wasvery difficult.ReferencesHebden Chemistry 12 Workbook for Students, Unit 1 Reaction Kinetics, pg. 1-36 Heath Chemistry Laboratory auditions, Experiment 18 A Factors bear on Reaction Rate, pages. 192-196 Factors Affecting Reaction Rates http//chemwiki.ucdavis.edu/Physical_Chemistry/Kinetics/Factors_That_Affect_Reaction_Rates This website was used on October 3, 2014 to help develop a better understanding of collision theory in order to let off the various factors affecting the rate of reaction.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.